The International Energy Outlook 2013 has been partially released

After taking 2012 off, the U.S. Department of Energy’s Energy Information Administration has published the charts and tables for its 2013 International Energy Outlook.

They should have taken another year…

On the other hand, they waited until the day I returned from China to do so, which means I can blog about it (I can’t get to WordPress from China). So if I have any spare time I’ll be blogging about the report right up until the day I return to China. I think there’s a lot to say.

They’ve bumped up their estimated CAGR for energy consumption, from 1.4% in their 2011 report to 1.5% in 2015. They estimate energy consumption will grow from 523.9 quads in 2010 to 819.6 quads in 2040.

This is despite the fact that during the Great Recession since 2008, growth has been 1.88%…

They still think energy consumption in the U.S. will only amount to 0.3% per year, despite robust projections for population growth and increased GDP and income per person.

In other words, I can write pretty much the same things about this report as I did the last–I just have to change a few numbers.

The DOE is again dramatically underestimating the growth in consumption in the developing world, going flat against the national statistics agencies for the countries involved.

One response to “The International Energy Outlook 2013 has been partially released

  1. Climate Researcher 

    A review of the book “CLIMATE CHANGE THE FACTS 2014” by about 24 authors.

    The best and most relevant chapter in this new book is that by William Soon, namely Chapter 4 “Sun Shunned” in which he discusses things such as the eccentricity of the Sun’s orbit that I have also pointed out as the principal regulator of glacial periods.

    The rest of the chapters on the “science” do not discuss the valid physics which is really what does determine Earth’s surface temperatures. Instead the “lukes” all reiterate the false claim that carbon dioxide causes significant warming of the surface by radiative forcing. Nowhere is the assumed process of forcing actually discussed. We just get the usual false paradigm that carbon dioxide traps outward radiation and thus supposedly makes the surface warmer.

    Carbon dioxide does not trap thermal energy. It disposes of what it absorbs either by subsequent radiation or by sensible heat transfer (via molecular collisions) to other air molecules which outnumber it by 2,500 to 1. It also helps nitrogen and oxygen cool through such collisions, and may subsequently radiate the energy thus acquire out of the atmosphere.

    All radiation between regions at different temperatures can only transfer thermal energy from the warmer region (or surface) to a cooler region. This means all heat transfer in the troposphere is generally upwards to cooler regions, with a proportion always getting through to space. There is no thermal energy transferred to a warmer surface. The energy transfer is the other way. The Sun’s radiation is not helped by radiation from the atmosphere which is only sending back some of its own energy now with much lower energy photons. Radiating gases reduce the insulating effect by helping energy to escape faster, and that is why moist air in double glazed windows also reduces the insulating effect, just as does water vapor in the troposphere.

    Nowhere in the book do we see the surface temperature explained correctly using Stefan Boltzmann calculations. No one ever does this, because it is an absolute stumbling block for climatologists. The mean solar flux entering the surface is only about 163W/m^2 after 52% of the solar radiation has been either absorbed or reflected by the surface, clouds or atmosphere. But such a low level of radiation would only produce a very cold -41°C. That’s even colder than what the IPCC claims would be the case, namely -18°C without greenhouse gases. They deduce that by assuming that the whole troposphere would be isothermal due to convective heat transfer, including sensible heat transfers by molecular collision.

    Hence all the “luke” authors fall for the trap of not actually explaining the existing surface temperature, let alone what carbon dioxide might or might not do. How could you work out the latter if you don’t know your starting point? The truth is that you cannot calculate the surface temperature of any planet that has a significant atmosphere by using radiation calculations. Hence all the considerations pertaining to radiation and absorption by carbon dioxide are totally within a wrong paradigm.

    That assumption by the IPCC (and thus by the “lukes” who have written this book) that the troposphere would be isothermal was rubbished in the 19th century by some physicists who understood the process described in statements of the Second Law of Thermodynamics. It is still being rubbished to this day, and even more so, now that physicists realise that the Second Law is all about entropy increasing to the point where there are no unbalanced energy potentials. In a gravitational field this state of thermodynamic equilibrium is attained when all the energy potentials involving gravitational potential energy, kinetic energy and radiative energy balance out. That is when the environmental temperature gradient is attained, and the very fact that it exists enables us to explain all planetary surface temperatures (and the required energy flows) without the slightest reference to back radiation, let alone trace gases like carbon dioxide. Only water vapor has a significant effect in lowering that gradient because of its radiating properties. It thus cools the surface, and that puts a big spanner in the works for the IPCC et al.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s